Performance Analysis of Indian Railway Zones using MCDM Approaches

Authors

DOI:

https://doi.org/10.31181/dma31202549

Keywords:

MCDM, Indian Railways, Supply chain management, Data analysis

Abstract

The study aims to enhance the efficiency and effectiveness of Indian Railways (IR), a public sector infrastructural organization, through a performance analysis using various Multi-Criteria Decision-Making (MCDM) methods. Analyzing the Indian Railway’s open data, the study optimizes and ranks the zones of IR, offering insights for targeted investments to boost future performance. This research holds value by furnishing managerial perspectives, formulating strategies, and elevating the performance of different zones within Indian Railways. Through the identification of improvement areas, the analysis empowers decision-making, facilitating overall enhanced performance. MCDM, Indian Railways, Supply and demand, Data analysis.

Downloads

Download data is not yet available.

References

Abraham George, S., & Rangaraj, N. (2008). A performance benchmarking study of Indian Railway zones. Benchmarking: An International Journal, 15(5), 599-617. https://doi.org/10.1108/14635770810903178

Radnor, Z., & McGuire, M. (2004). Performance management in the public sector: fact or fiction?. International journal of productivity and performance management, 53(3), 245-260. https://doi.org/10.1108/17410400410523783

Ranjan, R., Chatterjee, P., & Chakraborty, S. (2016). Performance evaluation of Indian Railway zones using DEMATEL and VIKOR methods. Benchmarking: An International Journal, 23(1), 78-95. https://doi.org/10.1108/BIJ-09-2014-0088

Agarwal, R. (2008). Public transportation and customer satisfaction: the case of Indian railways. Global Business Review, 9(2), 257-272. https://doi.org/10.1177/097215090800900206

Singh, Y. P. (2002). Performance of the Kolkata (Calcutta) Metro Railway: a case study. In urban mobility for all. proceedings of the 10th International CODATU conference. http://worldcat.org/isbn/9058093999

Raghuram, G., & Gangwar, R. (2008). Indian Railways in the past twenty years issues, performance and challenges.

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology, 14, 1-13. https://doi.org/10.1186/1471-2288-14-135

Bock, H. H. (2007). Clustering methods: a history of k-means algorithms. Selected contributions in data analysis and classification, 161-172. https://doi.org/10.1007/978-3-540-73560-1_15

Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191. https://doi.org/10.1007/978-3-642-48318-9_3

Narang, M., Kumar, A., & Dhawan, R. (2023). A fuzzy extension of MEREC method using parabolic measure and its applications. Journal of Decision Analytics and Intelligent Computing, 3(1), 33–46. https://doi.org/10.31181/jdaic10020042023n

Kizielewicz, B., & Sałabun, W. (2024). SITW Method: A New Approach to Re-identifying Multi-criteria Weights in Complex Decision Analysis. Spectrum of Mechanical Engineering and Operational Research, 1(1), 215-226. https://doi.org/10.31181/smeor11202419

Dağıstanlı, H. A. (2024). An Interval-Valued Intuitionistic Fuzzy VIKOR Approach for R&D Project Selection in Defense Industry Investment Decisions. Journal of Soft Computing and Decision Analytics, 2(1), 1-13. https://doi.org/10.31181/jscda21202428

Shekhovtsov, A., & Sałabun, W. (2020). A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Computer Science, 176, 3730-3740. https://doi.org/10.1016/j.procs.2020.09.014

Krishankumar, R., Garg, H., Arun, K., Saha, A., Ravichandran, K. S., & Kar, S. (2021). An integrated decision-making COPRAS approach to probabilistic hesitant fuzzy set information. Complex & Intelligent Systems, 7(5), 2281-2298. https://doi.org/10.1007/s40747-021-00387-w

Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., & Elyasi, G. R. (2012). PROMETHEE II: A knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255-263. https://doi.org/10.1016/j.cageo.2011.12.012

Abdullah, L., Chan, W., & Afshari, A. (2019). Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. Journal of Industrial Engineering International, 15, 271-285. https://doi.org/10.1007/s40092-018-0289-z

Chourabi, Z., Khedher, F., Babay, A., & Cheikhrouhou, M. (2019). Multi-criteria decision making in workforce choice using AHP, WSM and WPM. The Journal of The Textile Institute, 110(7), 1092-1101. https://doi.org/10.1080/00405000.2018.1541434

Kaddani, S., Vanderpooten, D., Vanpeperstraete, J. M., & Aissi, H. (2017). Weighted sum model with partial preference information: Application to multi-objective optimization. European Journal of Operational Research, 260(2), 665-679. https://doi.org/10.1016/j.ejor.2017.01.003

Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural and multidisciplinary optimization, 41, 853-862. https://doi.org/10.1007/s00158-009-0460-7

Miljković, B., Žižović, M. R., Petojević, A., & Damljanović, N. (2017). New weighted sum model. Filomat, 31(10), 2991-2998. https://doi.org/10.2298/FIL1710991M

Published

2024-10-18

How to Cite

Ganguly, S., Ray Chaudhury, S., Mukherjee, A., & Si, A. (2024). Performance Analysis of Indian Railway Zones using MCDM Approaches . Decision Making Advances, 3(1), 111–125. https://doi.org/10.31181/dma31202549