Performance Analysis of Indian Railway Zones using MCDM Approaches
DOI:
https://doi.org/10.31181/dma31202549Keywords:
MCDM, Indian Railways, Supply chain management, Data analysisAbstract
The study aims to enhance the efficiency and effectiveness of Indian Railways (IR), a public sector infrastructural organization, through a performance analysis using various Multi-Criteria Decision-Making (MCDM) methods. Analyzing the Indian Railway’s open data, the study optimizes and ranks the zones of IR, offering insights for targeted investments to boost future performance. This research holds value by furnishing managerial perspectives, formulating strategies, and elevating the performance of different zones within Indian Railways. Through the identification of improvement areas, the analysis empowers decision-making, facilitating overall enhanced performance. MCDM, Indian Railways, Supply and demand, Data analysis.
Downloads
References
Abraham George, S., & Rangaraj, N. (2008). A performance benchmarking study of Indian Railway zones. Benchmarking: An International Journal, 15(5), 599-617. https://doi.org/10.1108/14635770810903178
Radnor, Z., & McGuire, M. (2004). Performance management in the public sector: fact or fiction?. International journal of productivity and performance management, 53(3), 245-260. https://doi.org/10.1108/17410400410523783
Ranjan, R., Chatterjee, P., & Chakraborty, S. (2016). Performance evaluation of Indian Railway zones using DEMATEL and VIKOR methods. Benchmarking: An International Journal, 23(1), 78-95. https://doi.org/10.1108/BIJ-09-2014-0088
Agarwal, R. (2008). Public transportation and customer satisfaction: the case of Indian railways. Global Business Review, 9(2), 257-272. https://doi.org/10.1177/097215090800900206
Singh, Y. P. (2002). Performance of the Kolkata (Calcutta) Metro Railway: a case study. In urban mobility for all. proceedings of the 10th International CODATU conference. http://worldcat.org/isbn/9058093999
Raghuram, G., & Gangwar, R. (2008). Indian Railways in the past twenty years issues, performance and challenges.
Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology, 14, 1-13. https://doi.org/10.1186/1471-2288-14-135
Bock, H. H. (2007). Clustering methods: a history of k-means algorithms. Selected contributions in data analysis and classification, 161-172. https://doi.org/10.1007/978-3-540-73560-1_15
Hwang, C. L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191. https://doi.org/10.1007/978-3-642-48318-9_3
Narang, M., Kumar, A., & Dhawan, R. (2023). A fuzzy extension of MEREC method using parabolic measure and its applications. Journal of Decision Analytics and Intelligent Computing, 3(1), 33–46. https://doi.org/10.31181/jdaic10020042023n
Kizielewicz, B., & Sałabun, W. (2024). SITW Method: A New Approach to Re-identifying Multi-criteria Weights in Complex Decision Analysis. Spectrum of Mechanical Engineering and Operational Research, 1(1), 215-226. https://doi.org/10.31181/smeor11202419
Dağıstanlı, H. A. (2024). An Interval-Valued Intuitionistic Fuzzy VIKOR Approach for R&D Project Selection in Defense Industry Investment Decisions. Journal of Soft Computing and Decision Analytics, 2(1), 1-13. https://doi.org/10.31181/jscda21202428
Shekhovtsov, A., & Sałabun, W. (2020). A comparative case study of the VIKOR and TOPSIS rankings similarity. Procedia Computer Science, 176, 3730-3740. https://doi.org/10.1016/j.procs.2020.09.014
Krishankumar, R., Garg, H., Arun, K., Saha, A., Ravichandran, K. S., & Kar, S. (2021). An integrated decision-making COPRAS approach to probabilistic hesitant fuzzy set information. Complex & Intelligent Systems, 7(5), 2281-2298. https://doi.org/10.1007/s40747-021-00387-w
Abedi, M., Torabi, S. A., Norouzi, G. H., Hamzeh, M., & Elyasi, G. R. (2012). PROMETHEE II: A knowledge-driven method for copper exploration. Computers & Geosciences, 46, 255-263. https://doi.org/10.1016/j.cageo.2011.12.012
Abdullah, L., Chan, W., & Afshari, A. (2019). Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. Journal of Industrial Engineering International, 15, 271-285. https://doi.org/10.1007/s40092-018-0289-z
Chourabi, Z., Khedher, F., Babay, A., & Cheikhrouhou, M. (2019). Multi-criteria decision making in workforce choice using AHP, WSM and WPM. The Journal of The Textile Institute, 110(7), 1092-1101. https://doi.org/10.1080/00405000.2018.1541434
Kaddani, S., Vanderpooten, D., Vanpeperstraete, J. M., & Aissi, H. (2017). Weighted sum model with partial preference information: Application to multi-objective optimization. European Journal of Operational Research, 260(2), 665-679. https://doi.org/10.1016/j.ejor.2017.01.003
Marler, R. T., & Arora, J. S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural and multidisciplinary optimization, 41, 853-862. https://doi.org/10.1007/s00158-009-0460-7
Miljković, B., Žižović, M. R., Petojević, A., & Damljanović, N. (2017). New weighted sum model. Filomat, 31(10), 2991-2998. https://doi.org/10.2298/FIL1710991M
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Decision Making Advances
This work is licensed under a Creative Commons Attribution 4.0 International License.