The Evolution of Sentiment Analysis Across Various Scientific Disciplines: A Comprehensive Review Based on the Bibliometric Technique

Authors

DOI:

https://doi.org/10.31181/dma21202441

Keywords:

Sentiment Analysis, Bibliometric Analysis, VOSviewer, Web of Science, Systematic Review

Abstract

The unprecedented development of artificial intelligence has been associated with several challenges given its substantial influence on economic, social, and cultural structures. Particularly, natural language processing, text analysis, computational linguistics, and biometrics have been important topics of research among scholars in computer science (sentiment analysis), given the notable increase in social media marketing and e-commerce. In this respect, it becomes imperative to trace the evolution of sentiment analysis not only in computer science and information technology-related fields as existing literature does but also across other disciplines. Therefore, the current study is the first attempt to provide a comprehensive review for sentiment analysis using the bibliometric technique for 1668 research articles published in 2023 collected from Web of Science. In this study, we identify in percentage the contribution of sentiment analysis and common keywords across various research fields. Additionally, the most influential research and active collaborative authors are presented. Finally, the gaps and research topics, which received minimal attention regarding sentiment analysis, are suggested and elaborated on.

Downloads

Download data is not yet available.

References

Hagerty, A., & Rubinov, I. (2019). Global AI ethics: a review of the social impacts and ethical implications of artificial intelligence. arXiv preprint arXiv:1907.07892. https://doi.org/10.48550/arXiv.1907.07892.

Gallego, A., & Kurer, T. (2022). Automation, digitalization, and artificial intelligence in the workplace: implications for political behavior. Annual Review of Political Science, 25, 463–484. https://doi.org/10.1146/annurev-polisci-051120-104535.

Önden, A., & Alnour, M. (2023). ChatGPT and OpenAI: A Comprehensive Bibliometric Review. Journal of Soft Computing and Decision Analytics, 1(1), 254-264. https://doi.org/10.31181/jscda11202324.

Pradana, M., Elisa, H. P., & Syarifuddin, S. (2023). Discussing ChatGPT in education: A literature review and bibliometric analysis. Cogent Education, 10(2), 2243134. https://doi.org/10.1080/2331186X.2023.2243134.

Dave, T., Athaluri, S. A., & Singh, S. (2023). ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Frontiers in Artificial Intelligence, 6, 1169595. https://doi.org/10.3389/frai.2023.1169595.

Geerling, W., Mateer, G. D., Wooten, J., & Damodaran, N. (2023). ChatGPT has aced the test of understanding in college economics: Now what?. The American Economist, 68(2), 233-245. https://doi.org/10.1177/05694345231169654.

Short, C. E., & Short, J. C. (2023). The artificially intelligent entrepreneur: ChatGPT, prompt engineering, and entrepreneurial rhetoric creation. Journal of Business Venturing Insights, 19, e00388. https://doi.org/10.1016/j.jbvi.2023.e00388.

Biswas, S. (2023). The Function of chat GPT in Social Media: According to chat GPT. Available at SSRN 4405389. https://doi.org/10.2139/ssrn.4405389.

Ali, H., & Aysan, A. F. (2023). What will ChatGPT revolutionize in financial industry?. Available at SSRN 4403372. https://doi.org/10.2139/ssrn.4403372.

Zarifhonarvar, A. (2024). Economics of chatgpt: A labor market view on the occupational impact of artificial intelligence. Journal of Electronic Business & Digital Economics, 3(2), 100-116. https://doi.org/10.1108/JEBDE-10-2023-0021.

Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383.

Önden, A. (2023). Artificial Intelligence in Management Information System: Bibliographical Review. In: International Research in Social, Human and Administrative Sciences XVIII, Istanbul: Eğitim Yayınevi, pp. 41–56.

Chen, X., & Xie, H. (2020). A structural topic modeling-based bibliometric study of sentiment analysis literature. Cognitive Computation, 12, 1097-1129. https://doi.org/10.1007/s12559-020-09745-1.

Qazi, A., Raj, R. G., Hardaker, G., & Standing, C. (2017). A systematic literature review on opinion types and sentiment analysis techniques: Tasks and challenges. Internet Research, 27(3), 608-630. https://doi.org/10.1108/IntR-04-2016-0086.

Tirea, M. (2013). Traders’ Behavior Effect on Stock Price Evolution. In: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 273–280. https://doi.org/10.1109/SYNASC.2013.43.

Brauwers, G., & Frasincar, F. (2022). A survey on aspect-based sentiment classification. ACM Computing Surveys, 55(4), 1-37. https://doi.org/10.1145/3503044.

Costola, M., Hinz, O., Nofer, M., & Pelizzon, L. (2023). Machine learning sentiment analysis, COVID-19 news and stock market reactions. Research in International Business and Finance, 64, 101881. https://doi.org/10.1016/j.ribaf.2023.101881.

Mao, R., Liu, Q., He, K., Li, W., & Cambria, E. (2022). The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection. IEEE Transactions on Affective Computing. https://doi.org/10.1109/TAFFC.2022.3204972.

Tubishat, M., Idris, N., & Abushariah, M. A. (2018). Implicit aspect extraction in sentiment analysis: Review, taxonomy, oppportunities, and open challenges. Information Processing & Management, 54(4), 545-563. https://doi.org/10.1016/j.ipm.2018.03.008.

Mohammad, S. M. (2016). Sentiment analysis: Detecting valence, emotions, and other affectual states from text. In: Emotion measurement (pp. 201-237). Woodhead Publishing.

Onden, A., & Kiygi-Calli, M. (2018). The effects of brands'posts on social media: conceptual framework and application method. Research Journal of Business and Management, 5(3), 238-250.

Nandwani, P., & Verma, R. (2021). A review on sentiment analysis and emotion detection from text. Social Network Analysis and Mining, 11(1), 81. https://doi.org/10.1007/s13278-021-00776-6.

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134.

Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. https://doi.org/10.1007/s10462-022-10144-1.

Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access, 8, 23522-23530. https://doi.org/10.1109/ACCESS.2020.2969854.

Rodrigues, A. P., Fernandes, R., Shetty, A., K, A., Lakshmanna, K., & Shafi, R. M. (2022). [Retracted] Real‐Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques. Computational Intelligence and Neuroscience, 2022(1), 5211949. https://doi.org/10.1155/2022/5211949.

Singh, J., Singh, G., & Singh, R. (2017). Optimization of sentiment analysis using machine learning classifiers. Human-centric Computing and information Sciences, 7, 1-12. https://doi.org/10.1186/s13673-017-0116-3.

Manek, A. S., Shenoy, P. D., & Mohan, M. C. (2017). Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier. World Wide Web, 20, 135-154. https://doi.org/10.1007/s11280-015-0381-x.

Huq, M. R., Ahmad, A., & Rahman, A. (2017). Sentiment analysis on Twitter data using KNN and SVM. International Journal of Advanced Computer Science and Applications, 8(6). https://doi.org/10.14569/IJACSA.2017.080603.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070.

Batistič, S., & van der Laken, P. (2019). History, evolution and future of big data and analytics: a bibliometric analysis of its relationship to performance in organizations. British Journal of Management, 30(2), 229-251. https://doi.org/10.1111/1467-8551.12340.

Sharifi, A., Khavarian-Garmsir, A. R., Allam, Z., & Asadzadeh, A. (2023). Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956–2022. Progress in Planning, 173, 100740. https://doi.org/10.1016/j.progress.2023.100740.

Fan, L., Li, L., Ma, Z., Lee, S., Yu, H., & Hemphill, L. (2023). A bibliometric review of large language models research from 2017 to 2023. arXiv preprint arXiv:2304.02020. https://doi.org/10.48550/arXiv.2304.02020.

Farrukh, M., Raza, A., Mansoor, A., Khan, M. S., & Lee, J. W. C. (2023). Trends and patterns in pro-environmental behaviour research: a bibliometric review and research agenda. Benchmarking: An International Journal, 30(3), 681-696. https://doi.org/10.1108/BIJ-10-2020-0521.

Wright, R. W., Brand, R. A., Dunn, W., & Spindler, K. P. (2007). How to write a systematic review. Clinical Orthopaedics and Related Research, 455, 23-29. https://doi.org/10.1177/0363546513497567.

Yıldırım, E., Mert, K., & Cebeci, H. İ. (2021). Comprehensive Review of the Marketing Ethics Literature: A Bibliometric Approach. Is Ahlakı Dergisi, 14(2), 242-269. https://doi.org/10.12711/tjbe.2021.14.2.2059.

Ezugwu, A. E., Shukla, A. K., Agbaje, M. B., Oyelade, O. N., José-García, A., & Agushaka, J. O. (2021). Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Computing and Applications, 33, 6247-6306. https://doi.org/10.1007/s00521-020-05395-4.

Goyal, K., & Kumar, S. (2021). Financial literacy: A systematic review and bibliometric analysis. International Journal of Consumer Studies, 45(1), 80-105. https://doi.org/10.1111/ijcs.12605.

Lobonț, O. R., Țăran, A. M., & Costea, F. (2020). E-Government Research Still Matter? A Bibliometric Analysis. Annals of the University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied Informatics, 26(2). https://doi.org/10.35219/eai15840409106.

Liu, X., Shi, T., Zhou, G., Liu, M., Yin, Z., Yin, L., & Zheng, W. (2023). Emotion classification for short texts: an improved multi-label method. Humanities and Social Sciences Communications, 10(1), 1-9. https://doi.org/10.1057/s41599-023-01816-6.

Zhang, W., Li, X., Deng, Y., Bing, L., & Lam, W. (2022). A survey on aspect-based sentiment analysis: Tasks, methods, and challenges. IEEE Transactions on Knowledge and Data Engineering, 35(1), 11019-11038. https://doi.org/10.1109/TKDE.2022.3230975.

Poria, S., Hazarika, D., Majumder, N., & Mihalcea, R. (2020). Beneath the tip of the iceberg: Current challenges and new directions in sentiment analysis research. IEEE Transactions on Affective Computing, 14(1), 108-132. https://doi.org/10.1109/TAFFC.2020.3038167.

Hassani, H., & Silva, E. S. (2023). The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big Data and Cognitive Computing, 7(2), 62. https://doi.org/10.3390/bdcc7020062.

Hartmann, J., Heitmann, M., Siebert, C., & Schamp, C. (2023). More than a feeling: Accuracy and application of sentiment analysis. International Journal of Research in Marketing, 40(1), 75-87. https://doi.org/10.1016/j.ijresmar.2022.05.005.

Hu, H., Xu, J., Liu, M., & Lim, M. K. (2023). Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning. Journal of Business Research, 156, 113480. https://doi.org/10.1016/j.jbusres.2022.113480.

Bouschery, S. G., Blazevic, V., & Piller, F. T. (2023). Augmenting human innovation teams with artificial intelligence: Exploring transformer‐based language models. Journal of Product Innovation Management, 40(2), 139-153. https://doi.org/10.1111/jpim.12656.

Zhu, T., Li, L., Yang, J., Zhao, S., Liu, H., & Qian, J. (2022). Multimodal sentiment analysis with image-text interaction network. IEEE Transactions on Multimedia, 25, 3375-3385. https://doi.org/10.1109/TMM.2022.3160060.

Jin, W., Zhao, B., Zhang, L., Liu, C., & Yu, H. (2023). Back to common sense: Oxford dictionary descriptive knowledge augmentation for aspect-based sentiment analysis. Information Processing & Management, 60(3), 103260. https://doi.org/10.1016/j.ipm.2022.103260.

Bello, A., Ng, S. C., & Leung, M. F. (2023). A BERT framework to sentiment analysis of tweets. Sensors, 23(1), 506. https://doi.org/10.3390/s23010506.

He, K., Mao, R., Gong, T., Li, C., & Cambria, E. (2023). Meta-based self-training and re-weighting for aspect-based sentiment analysis. IEEE Transactions on Affective Computing, 14(3), 1731-1742. https://doi.org/10.1109/TAFFC.2022.3202831.

Liu, M., Luo, X., & Lu, W. Z. (2023). Public perceptions of environmental, social, and governance (ESG) based on social media data: Evidence from China. Journal of Cleaner Production, 387, 135840. https://doi.org/10.1016/j.jclepro.2022.135840.

Lian, Z., Liu, B., & Tao, J. (2023). Smin: Semi-supervised multi-modal interaction network for conversational emotion recognition. IEEE Transactions on Affective Computing, 14(3), 2415-2429. https://doi.org/10.1109/TAFFC.2022.3141237.

Thakur, N. (2023). Sentiment analysis and text analysis of the public discourse on Twitter about COVID-19 and MPox. Big Data and Cognitive Computing, 7(2), 116. https://doi.org/10.3390/bdcc7020116.

Alqarni, A., & Rahman, A. (2023). Arabic Tweets-based Sentiment Analysis to investigate the impact of COVID-19 in KSA: A deep learning approach. Big Data and Cognitive Computing, 7(1), 16. https://doi.org/10.3390/bdcc7010016.

Wang, W., Wang, R., Wang, L., Wang, Z., & Ye, A. (2021). Towards a robust deep neural network against adversarial texts: A survey. IEEE Transactions on Knowledge and Data Engineering, 35(3), 3159-3179. https://doi.org/10.1109/TKDE.2021.3117608.

Li, R. Y. M., Wang, Q., Zeng, L., & Chen, H. (2023). A study on public perceptions of carbon neutrality in China: Has the idea of ESG been encompassed?. Frontiers in Environmental Science, 10, 949959. https://doi.org/10.3389/fenvs.2022.949959.

Published

2024-06-20

How to Cite

Önden, A., Alnour, M., Simic, V., & Pamucar, D. (2024). The Evolution of Sentiment Analysis Across Various Scientific Disciplines: A Comprehensive Review Based on the Bibliometric Technique. Decision Making Advances, 2(1), 222–237. https://doi.org/10.31181/dma21202441