Brain Tumor Detection Enhanced with Transfer Learning using SqueezeNet

Authors

DOI:

https://doi.org/10.31181/dma21202432

Keywords:

Convolutional Neural Networks, Deep Learning, Brain Tumor, Medical Imagining, Deep Learning Analysis

Abstract

The study introduces the Brain Tumor Detection Transfer Learning Algorithm (BTDTLA), a novel model that employs transfer learning and a comprehensive dataset of brain images. The algorithm makes a significant breakthrough in the precise detection of brain tumors, particularly critical for cases requiring swift intervention. Development and testing of BTDTLA are conducted on MATLAB 2018. The evaluation metrics, including sensitivity, specificity, precision, accuracy, and the Matthews correlation coefficient, highlight the robust performance of BTDTLA, positioning it as a valuable tool for medical practitioners. This underscores the algorithm's potential to advance practices for early and accurate brain tumor detection. The study emphasizes BTDTLA's pivotal role in contributing to the field, underscoring its significance in enhancing medical practices related to brain tumor diagnosis.

Downloads

Download data is not yet available.

References

Amin, J., Anjum, M.A., Sharif, M., Jabeen, S., Kadry, S., & Moreno Ger, P. (2022). A New Model for Brain Tumor Detection Using Ensemble Transfer Learning and Quantum Variational Classifier. Computational Intelligence and Neuroscience, 2022, ID 3236305. https://doi.org/10.1155/2022/3236305.

Ahmad, S., & Choudhury, P.K. (2022). On the Performance of Deep Transfer Learning Networks for Brain Tumor Detection Using MR Images. IEEE Access, 10, 59099-59114. https://doi.org/10.1109/ACCESS.2022.3179376.

Meem, R.F., & Hasan, K.T. (2023). Osteosarcoma Tumor Detection using Transfer Learning Models. ArXiv, abs/2305.09660. https://doi.org/10.21203/rs.3.rs-3329685/v1.

Bairagi, V.K., Gumaste, P.P., Rajput, S.H., & ChethanK, S. (2023). Automatic brain tumor detection using CNN transfer learning approach. Medical & Biological Engineering & Computing, 61, 1821-1836. https://doi.org/10.1007/s11517-023-02820-3.

Sutradhar, P.S., Tarefder, P.K., Prodan, I., Saddi, M.S., & Rozario, V.S. (2021). Multi-Modal Case Study on MRI Brain Tumor Detection Using Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbor, Temporal Convolution & Transfer Learning. AIUB Journal of Science and Engineering (AJSE), 20(3), 107-1117. https://doi.org/10.53799/ajse.v20i3.175.

Amin, J., Sharif, M., Haldorai, A., Yasmin, M., & Nayak, R.S. (2021). Brain tumor detection and classification using machine learning: a comprehensive survey. Complex & Intelligent Systems, 8, 3161-3183. https://doi.org/10.1007/s40747-021-00563-y.

Ghazal, T.M., Hussain, S., Khan, M.F., Khan, M.A., Said, R.A., & Ahmad, M. (2022). Detection of Benign and Malignant Tumors in Skin Empowered with Transfer Learning. Computational Intelligence and Neuroscience, 2022, ID 482692. https://doi.org/10.1155/2022/4826892.

Jain, S., Singhania, U., Tripathy, B., Nasr, E.S., Aboudaif, M.K., & Kamrani, A.K. (2021). Deep Learning-Based Transfer Learning for Classification of Skin Cancer. Sensors, 21(23), 8142. https://doi.org/10.3390/s21238142.

Khan, M.A., Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M.S., Malik, N.A., & Damaševičius, R. (2023). Multimodal brain tumor detection and classification using deep saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology, 33(2), 572-587. https://doi.org/10.1002/ima.22831.

Ullah, N., Khan, J.A., Khan, M.S., Khan, W., Hassan, I., Obayya, M.I., Negm, N., & Salama, A.S. (2022). An Effective Approach to Detect and Identify Brain Tumors Using Transfer Learning. Applied Sciences, 12(11), 5645. https://doi.org/10.3390/app12115645.

Hencya, F.R., Mandala, S., Tang, T.B., Soperi, M., & Zahid, M. (2023). A Transfer Learning-Based Model for Brain Tumor Detection in MRI Images. Jurnal Nasional Teknik Elektro, 12(2). https://doi.org/10.25077/jnte.v12n2.1123.2023.

Abdalla, P.A., Mohammed, B.A., & Saeed, A.M. (2023). The impact of image augmentation techniques of MRI patients in deep transfer learning networks for brain tumor detection. Journal of Electrical Systems and Information Technology, 10, 51. https://doi.org/10.1186/s43067-023-00119-9.

Asif, S., Zhao, M., Tang, F., & Zhu, Y. (2023). An enhanced deep learning method for multi-class brain tumor classification using deep transfer learning. Multimedia Tools and Applications, 82, 31709-31736. https://doi.org/10.1007/s11042-023-14828-w.

Savaş, S., & Damar, Ç. (2023). Transfer‐learning‐based classification of pathological brain magnetic resonance images. ETRI Journal. https://doi.org/10.4218/etrij.2022-0088.

Alhatemi, R.A.J., & Savaş, S. (2022). Transfer learning-based classification comparison of stroke. Computer Science, 2022, 192-201. https://doi.org/10.53070/bbd.1172807.

Ghosal, P., Nandanwar, L., Kanchan, S., Bhadra, A.K., Chakraborty, J., & Nandi, D. (2019). Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network. In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), 25-28 February, Gangtok, India. https://doi.org/10.1109/ICACCP.2019.8882973.

Terzi, D.S., & Azginoglu, N. (2023). In-Domain Transfer Learning Strategy for Tumor Detection on Brain MRI. Diagnostics, 13(12), 2110. https://doi.org/10.3390/diagnostics13122110.

Islam, R., Akhi, A.B., & Akter, F. (2023). A fine tune robust transfer learning based approach for brain tumor detection using VGG-16. Bulletin of Electrical Engineering and Informatics, 12(6), 3861-3868. https://doi.org/10.11591/eei.v12i6.5646.

Hurtík, P., Molek, V., Hula, J., Vajgl, M., Vlasánek, P., & Nejezchleba, T. (2022). Poly-YOLO: higher speed, more precise detection, and instance segmentation for YOLOv3. Neural Computing and Applications, 34, 8275-8290. https://doi.org/10.1007/s00521-021-05978-9.

Ghosh, A., Soni, B., & Baruah, U. (2023). Transfer Learning-Based Deep Feature Extraction Framework Using Fine-Tuned EfficientNet B7 for Multiclass Brain Tumor Classification. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-023-08607-w.

Published

2024-03-31

How to Cite

Baig, M. D., Ul Haq, H. B., Akram, W., & Mushtaq Awan, A. (2024). Brain Tumor Detection Enhanced with Transfer Learning using SqueezeNet. Decision Making Advances, 2(1), 129–141. https://doi.org/10.31181/dma21202432