Marine Object Detection using YOLOv4 Adapted Convolutional Neural Network
DOI:
https://doi.org/10.31181/dma21202428Keywords:
Machine Learning, Deep Learning, Object Detection, YOLOAbstract
This research presents an innovative application of the YOLOv4 object detection model for the identification and classification of marine objects within a dataset encompassing seven distinct classes. The study focuses on enhancing the robustness and accuracy of object detection in challenging marine environments, leveraging the unique capabilities of YOLOv4. Pre-processing steps involve resizing raw images, applying data augmentations, and normalizing pixel values to ensure optimal model training. Specifically tailored for underwater scenarios, additional color space transformations address variations in lighting conditions. The model is trained to detect marine objects such as fish, corals, and underwater structures, contributing to advancements in underwater exploration, environmental monitoring, and marine resource management. Experimental results demonstrate the effectiveness of the proposed approach, showcasing YOLOv4's ability to accurately identify and classify marine objects across the specified seven classes. This research not only expands the applicability of YOLOv4 in the marine domain but also provides valuable insights for the development of intelligent systems for underwater object detection.
Downloads
References
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0.
Toldinas, J., Venčkauskas, A., Damaševičius, R., Grigaliūnas, Š., Morkevičius, N., & Baranauskas, E. (2021). A novel approach for network intrusion detection using multistage deep learning image recognition. Electronics, 10(15), 1854. https://doi.org/10.3390/electronics10151854.
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2980-2988).
Zhang, J., Chen, Z., Yan, G., Wang, Y., & Hu, B. (2023). Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images. Remote Sensing, 15(20), 4974. https://doi.org/10.3390/rs15204974.
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J. & Zhang, L. (2023). Grounding dino: Marrying dino with grounded pre-training for open-set object detection. https://doi.org/10.48550/arXiv.2303.05499.
Song, P., Li, P., Dai, L., Wang, T., & Chen, Z. (2023). Boosting R-CNN: Reweighting R-CNN samples by RPN’s error for underwater object detection. Neurocomputing, 530, 150-164. https://doi.org/10.1016/j.neucom.2023.01.088.
Fayaz, S., Parah, S. A., & Qureshi, G. J. (2022). Underwater object detection: architectures and algorithms–a comprehensive review. Multimedia Tools and Applications, 81(15), 20871-20916. https://doi.org/10.1007/s11042-022-12502-1.
Yan, J., Zhou, Z., Zhou, D., Su, B., Xuanyuan, Z., Tang, J., Lai, Y., Chen, J. and Liang, W. (2022). Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling. Frontiers in Marine Science, 9, 1056300. https://doi.org/10.3389/fmars.2022.1056300.
Zhao, S., Zheng, J., Sun, S., & Zhang, L. (2022). An improved YOLO algorithm for fast and accurate underwater object detection. Symmetry, 14(8), 1669. https://doi.org/10.3390/sym14081669.
Zhao, L., Yun, Q., Yuan, F., Ren, X., Jin, J., & Zhu, X. (2023). YOLOv7-CHS: An Emerging Model for Underwater Object Detection. Journal of Marine Science and Engineering, 11(10), 1949. https://doi.org/10.3390/jmse11101949.
Zhang, M., Xu, S., Song, W., He, Q., & Wei, Q. (2021). Lightweight underwater object detection based on yolo v4 and multi-scale attentional feature fusion. Remote Sensing, 13(22), 4706. https://doi.org/10.3390/rs13224706.
Fu, C., Liu, R., Fan, X., Chen, P., Fu, H., Yuan, W., et al. (2023). Rethinking general underwater object detection: Datasets, challenges, and solutions. Neurocomputing, 517, 243-256. https://doi.org/10.1016/j.neucom.2022.10.039.
Wang, X., Jiang, X., Xia, Z., & Feng, X. (2022). Underwater object detection based on enhanced yolo. In 2022 International Conference on Image Processing and Media Computing (ICIPMC) (pp. 17-21), IEEE. https://doi.org/10.1109/ICIPMC55686.2022.00012.
Cimdins, M., Schmidt, S. O., John, F., Constapel, M., & Hellbrück, H. (2023). MA-RTI: Design and Evaluation of a Real-World Multipath-Assisted Device-Free Localization System. Sensors, 23(4), 2199. https://doi.org/10.3390/s23042199.
Mathias, A., Dhanalakshmi, S., Kumar, R., & Narayanamoorthi, R. (2022). Deep Neural Network Driven Automated Underwater Object Detection. Computers, Materials & Continua, 70(3), 5251-5267. https://doi.org/10.32604/cmc.2022.021168.
Huang, A., Zhong, G., Li, H., & Choi, D. (2022). Underwater Object Detection Using Restructured SSD. In CAAI International Conference on Artificial Intelligence (pp. 526-537), Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-20497-5_43.
Cai, L., Wang, C., & Xu, Y. (2021). A real-time FPGA accelerator based on Winograd algorithm for underwater object detection. Electronics, 10(23), 2889. https://doi.org/10.3390/electronics10232889.
Haq, H. B. U., & Saqlain, M. (2023). Iris detection for attendance monitoring in educational institutes amidst a pandemic: A machine learning approach. Journal of Industrial Intelligence, 1(3), 136-147. https://doi.org/10.56578/jii010301.
Zulqarnain, M., & Saqlain, M. (2023). Text readability evaluation in higher education using CNNs. Journal of Industrial Intelligence, 1(3), 184-193. https://doi.org/10.56578/jii010305.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientific Oasis

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.